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Abstract

The mechanisms by which presynaptic release influences synaptic plasticity are
fundamental to understanding learning and memory processes. In this study, we
employ computational modeling to explore the effects of presynaptic release dy-
namics on synaptic strength changes during spike-timing-dependent plasticity
(STDP). Using the Tsodyks-Markram model of synaptic dynamics, we simulate
the interactions between two neurons with varying presynaptic release parame-
ters. Our findings suggest that the magnitude of presynaptic release significantly
modulates the degree of synaptic potentiation and depression, highlighting the role
of presynaptic dynamics in shaping synaptic plasticity. Specifically, our results
show that the time constant of facilitation and recovery, as well as the magnitude of
presynaptic release, are crucial in controlling the extent of synaptic changes during
learning processes.

1 Introduction

Synaptic plasticity refers to the persistent changes in the structure, function, strength, and efficiency
of synapses, which form the basis of neural computation and signal processing. There are various
forms of synaptic plasticity, including Short-Term Plasticity (STP) and Long-Term Plasticity (LTP),
categorized by the timescale of the memory trace. While LTP is often associated with long-lasting
memory storage, STP occurs on much shorter timescales (milliseconds to seconds) and can involve
phenomena such as paired-pulse depression (PPD), paired-pulse facilitation (PPF), and post-tetanic
potentiation (PTP) [11, 8]. In addition, synaptic plasticity may manifest in forms such as Spiking-Rate-
Dependent Plasticity (SRDP), Spiking-Timing-Dependent Plasticity (STDP), associative learning,
and synaptic scaling [3, 1]. These mechanisms are fundamental to neural signal processing, learning,
and memory formation [7].

Among the different forms of plasticity, Short-Term Synaptic Plasticity (STP) is of particular interest
due to its role in shaping the temporal dynamics of synaptic transmission and the overall behavior of
neural networks. STP has been observed to play a critical role in processes such as motion control,
speech recognition, and working memory [14, 1]. STP can be categorized into two main types: Short-
Term Depression (STD) and Short-Term Facilitation (STF). STD is typically caused by a depletion
of neurotransmitters due to repetitive presynaptic activity, while STF arises from an increase in
neurotransmitter release probability due to calcium influx following a presynaptic spike [12]. Both
forms of STP have been extensively studied in various cortical regions [9, 5], with some synapses
exhibiting a dominance of STD, others STF, and many showing a mixture of both effects.

The study of how presynaptic release affects synaptic plasticity has gained considerable attention due
to its potential to explain the modulation of synaptic efficacy during learning. Presynaptic release
mechanisms, including facilitation and depression, influence the synaptic weight changes during
STDP. In particular, presynaptic release governs the balance between potentiation and depression,
ultimately affecting the overall synaptic strength and the processing of neural information. For
example, synaptic facilitation tends to enhance synaptic potentiation when presynaptic activity
closely precedes postsynaptic firing, while synaptic depression may inhibit this potentiation when the
presynaptic activity is excessive or poorly timed [6].
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Recent computational models, such as the Tsodyks-Markram model [12], have been instrumental
in understanding these dynamic processes. The Tsodyks-Markram model incorporates short-term
plasticity mechanisms, where the release probability of neurotransmitters is governed by two variables:
u, which represents the fraction of available neurotransmitters, and x, which represents the synaptic
depression or facilitation [13]. The synaptic weight w(t) is updated based on the interaction between
these two variables, and the presynaptic spike train modulates their values over time.

Our study extends this model to investigate the effects of presynaptic release dynamics on synaptic
plasticity during STDP. In particular, we explore how the varying presynaptic release characteristics,
such as the release probability and recovery time constants, influence synaptic strength changes
between two neurons. By simulating the interactions between these neurons with different presynaptic
release profiles, we aim to uncover how the timing and magnitude of presynaptic activity can modulate
the degree of synaptic potentiation and depression.

While the influence of presynaptic release on synaptic plasticity has been studied experimentally in
several contexts [2, 10], there is still a need for computational approaches that can capture the detailed
dynamics of synaptic interactions in complex neural networks. Here, we present a computational
model that incorporates presynaptic release dynamics to simulate the effects of STP on synaptic
efficacy during STDP. By varying key parameters of presynaptic release, such as the release probability
and the recovery time constants, we explore how these factors contribute to the shaping of synaptic
plasticity.

This paper provides a computational framework for studying the role of presynaptic release in modu-
lating synaptic plasticity and contributes to our understanding of how short-term synaptic dynamics
influence neural information processing. Our findings highlight the importance of presynaptic dynam-
ics in shaping the outcome of synaptic plasticity and suggest potential avenues for further research
into the functional implications of STP in learning and memory systems.

2 Method

2.1 Mathematical Model

We simulate two leaky integrate-and-fire (LIF) neurons connected via a Tsodyks-Markram synapse,
which includes mechanisms for short-term facilitation (STF) and short-term depression (STD). We
change the supporting Python package from NEST as in the original paper [4] to BrainPy. The LIF
neuron model is governed by the following differential equation for the membrane potential V' (¢):

dVv
Tm— = —(V — EL) + RI(t)
dt
where 7,,, = 15 ms is the membrane time constant, 7, = —65mV is the resting membrane potential,

and R = 1 M( is the membrane resistance. The input current I(t) consists of synaptic currents and
external inputs, with the synaptic current described by the Tsodyks-Markram model.

The synaptic dynamics are described by:
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w(t) = Amaxu(t)z(t)
Where:

* u(t) represents the recovery variable, which decays over time with a time constant 7re,

* x(t) represents the facilitation variable, which grows and decays with a time constant 7y,



* w(t) is the synaptic weight, and
* §(t — t;) is the Dirac delta function that accounts for the arrival times of presynaptic spikes.

Here, the synaptic strength w(t) depends on both the facilitation and recovery variables, with each
presynaptic spike inducing a transient change in the neurotransmitter release probability, modeled by
these variables.

2.2 Simulation Setup

Two neurons are modeled using the LIF neuron equations. The presynaptic spike trains are modeled
using Poisson processes, with each spike train defined by an exponential distribution for interspike
intervals. The simulation includes two current inputs to the neurons:

 [500pA, 50<t<51
L = {0, otherwise

Lty = {A2pA B0+ A< E<5LE AL
270, otherwise

where As represents the magnitude of the second current injection, and At is the time difference
between the two presynaptic spike events. This configuration allows us to manipulate the timing of
the inputs and explore their effects on synaptic plasticity.

2.3 Data Collection and Analysis

The synaptic weight w(t) is tracked during the simulation, with a focus on changes in synaptic
strength over time. We calculate the synaptic weight for different values of At, alpha, and beta, and
monitor how changes in presynaptic release parameters influence the synaptic efficacy during STDP.
We average the synaptic weight over the first and last 50 ms of the simulation to capture the initial
and final stages of synaptic change.

3 Results

The simulations reveal a clear relationship between presynaptic release dynamics and synaptic
plasticity. The presynaptic release magnitude, represented by As, and the timing between presynaptic
and postsynaptic spikes, significantly influence the synaptic potentiation and depression observed
during STDP.

As shown in the figure, the synaptic weight increases when presynaptic facilitation dominates,
particularly when the timing of the postsynaptic spike closely follows the presynaptic spike (i.e.,
smaller At). On the other hand, when the presynaptic spikes are poorly timed or excessive, synaptic
depression dominates, and the synaptic weight is reduced.

Additionally, we found that the facilitation time constant 7¢,. plays a crucial role in enhancing synaptic
potentiation. Increasing 7y, led to larger synaptic potentiation, while increasing the recovery time
constant 7. reduced the potentiation effect.

4 Conclusion

In this study, we presented a computational model to investigate how presynaptic release dynamics
influence synaptic plasticity during STDP. Our results demonstrate that the presynaptic release
parameters, such as the magnitude of release and the facilitation and recovery time constants,
significantly shape the synaptic strength changes between two neurons. The Tsodyks-Markram model
provided an effective framework to explore these interactions, revealing the importance of presynaptic
dynamics in determining synaptic potentiation and depression.

Our findings suggest that presynaptic release mechanisms play a key role in synaptic computation,
with potential implications for learning and memory processes. Future work should explore the effects
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Figure 1: Synaptic weight changes over time for different presynaptic release profiles.

of more complex neural network architectures, as well as the role of these dynamics in other forms
of plasticity, such as associative learning and memory consolidation. Further investigation into how
presynaptic release interacts with other synaptic processes could provide a deeper understanding of
how the brain encodes and processes information. Additionally, exploring the functional consequences
of presynaptic dynamics in larger, more biologically realistic networks could offer valuable insights
into the role of synaptic plasticity in cognitive processes.
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