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Abstract

In this paper, we present a novel approach to enhancing multi-agent collaboration
in the game of bridge, a challenging imperfect-information game. We introduce
a modular reinforcement learning (MARL) approach that incorporates large lan-
guage models (LLMs) to enhance agent collaboration, adaptation to new partners,
and robustness to changing game conditions. Our method builds on the PGX
bridge simulation platform and the DouZero algorithm, with a two-stage training
pipeline: pre-training for foundational strategies and fine-tuning for multi-agent
collaboration. We employ a modular system architecture with distinct components
for bidding and playing phases, each optimized independently while maintaining
overall strategy coherence. A reward transformation mechanism based on Nash
equilibrium is introduced to stabilize learning and promote game-theoretic stabil-
ity. Experimental results demonstrate that the proposed method achieves strong
zero-shot collaboration performance and adapts effectively to out-of-distribution
agents, highlighting the potential of combining MARL with LLMs for real-world
applications.

1 Introduction

Humans excel in cooperation within complex environments due to their ability to infer hidden
information, establish collaborative norms, and adapt to new partners or changing conditions. To
enable artificial intelligence systems with similar capabilities, multi-agent reinforcement learning
(MARL) provides a powerful framework for agents to learn through repeated interactions in partially
observable environments. Bridge, a four-player card game requiring two players on each team to
collaborate with imperfect information, epitomizes these challenges. Both bidding and playing phases
involve reasoning under uncertainty, collaborating with partners, and anticipating opponents’ actions.

In this work, we developed a bridge game system with a focus on robust multi-agent collaboration.
Unlike approaches that rely solely on self-play, which often fail to generalize to unseen partners, our
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Figure 1: A bidding box used in bridge games, showing all the bidding options for every player.

method seeks to balance strong performance with zero-shot collaboration (ZSC). Specifically, our
goal is to design strategies that i) adapt to various partners and game conditions and ii) approximate
game-theoretic stable solutions.

To achieve this, we built a modular system architecture and training pipeline for both the bidding and
playing phases of bridge. We utilized the JAX-based PGX environment, providing a scalable platform
to simulate realistic bridge scenarios. As an initial baseline, we employed DouZero, originally
designed for other multi-agent card games, to pre-train foundational strategies. We then optimized
these strategies through a two-stage process:

1. Pre-training: Using DouZero as a foundation, we equipped agents with general bidding
and playing capabilities.

2. Fine-tuning: Leveraging data from the PGX environment, we customized the training of
each system component to enhance multi-agent collaboration, including:

* Bidding System Generator: Generates legal bridge bids adhering to CCBA natural
bidding system rules.

* Player Strategy 1 and Player Strategy 2: Responsible for decision-making during the
play phase and trained in various scenarios.

Key to our approach is a reward transformation inspired by DeepNash to stabilize learning. This
transformation introduces an additional term to the environment reward, guiding strategies toward
approximate Nash equilibrium solutions. Our 3-on-3 design, each "team" comprising a bidding
generator and two playing agents, further reinforces collaboration while allowing independent
module optimization.

By combining flexible reward mechanisms, modular architecture, and phased training, our method
demonstrates strong performance in traditional self-play scenarios and robustness when paired with
out-of-distribution agents or strategies. Experimental results show promising zero-shot coordination
capabilities, highlighting the potential of carefully designed MARL frameworks for real-world tasks
like bridge, characterized by imperfect information.

2 Related Work

In the field of artificial intelligence, tackling imperfect-information games, particularly bridge, has
become a significant and challenging research area. This section reviews related studies, covering
bridge theory, Al approaches for bridge, multi-agent communication mechanisms, representation
learning in imperfect-information games, decision-making models based on Transformers, and the
application of large language models (LLMs) in gaming.
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2.1 Imperfect-Information Games and Bridge

Imperfect-information games are characterized by scenarios in which at least one participant lacks
complete knowledge of the strategies or actions of other players, introducing uncertainty into the
decision-making process [4]. Bridge, as a typical imperfect-information game, involves four players
divided into two teams. Each player only sees partial card information and must strategize through
information exchange and reasoning during the bidding and playing phases.

2.2 Al Research on Bridge

Early bridge Al systems relied primarily on Min-Max tree-solving methods, such as Monte Carlo Tree
Search (MCTS) combined with Double Dummy Solver (DDS), which were widely used in bridge
decision-making [13, 14]. For example, the GIB project utilized random sampling of the possible
distributions of unseen hands and calculated optimal plays based on expected values. However, these
methods have notable limitations:

1. There are no open hands in actual bridge games, and the sampling process struggles to cover
all possibilities, rendering the results heavily dependent on sample quality.

2. These methods fail to effectively incorporate information inferred during the bidding phase,
neglecting opponent hand modeling, which may lead to significant inference errors during
critical decisions.

3. The lack of opponent strategy modeling and prior assumptions causes substantial inaccu-
racies in multi-player strategy interactions [13]. These constraints indicate that traditional
MCTS-based approaches fall short in addressing the challenges posed by imperfect informa-
tion in bridge.

2.3 Multi-Agent Communication Mechanisms

The bidding phase in bridge serves as an implicit communication channel. Effectively learning and
utilizing this communication mechanism is crucial for enhancing bridge Al performance. Studies
such as IC3Net [5] have explored learning-based communication methods that use neural networks to
achieve agent collaboration. Additionally, attention-based communication models, such as ATOC [7],
have been applied in multi-agent systems to improve information sharing and coordination. However,
the application of these methods to bridge requires further exploration to address the complexities of
bidding strategies and dynamic card distributions.

2.4 Representation Learning in Imperfect-Information Games

In imperfect-information games, effectively representing and encoding hidden information (e.g.,
bids in the bidding phase and concealed cards in the playing phase) is critical for improving Al
decision-making. Current representation learning methods focus on efficiently encoding complex card
and communication information to support reasoning and decision-making under uncertainty [15].
Through advanced representation learning techniques, Al systems can better understand and process
implicit information, enabling the formulation of robust and effective strategies.

2.5 Decision-Making Models Based on Transformers

The Transformer architecture, known for its exceptional performance in natural language pro-
cessing, has gradually been applied to decision-making and gaming tasks. For instance, Decision
Transformer [2] leverages the Transformer model for offline reinforcement learning, learning com-
plex strategies via sequence modeling. Moreover, models such as Q-Transformer [3] and MA-
Transformer [8] have explored applying Transformers to multi-agent decision-making and strategy
optimization, demonstrating their potential in handling high-dimensional information and long-
term planning. These Transformer-based models provide new perspectives and methodologies for
addressing complex imperfect-information games like bridge.
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Figure 2: The overview of our 3-on-3 design framework. (1) Representation Learning Module, which encodes
game states, including bids, card distributions, and player interactions, using advanced neural network architec-
tures. (2) Decision-Making Module, which leverages sequence modeling and attention mechanisms to optimize
bidding and playing strategies under uncertainty, built upon the Transformer architecture. (3) Strategy Opti-

mization Module, which fine-tunes strategies through iterative self-play and opponent modeling by integrating
reinforcement learning algorithms.

2.6 Applications of Large Language Models in Gaming

Recently, large language models (LLMs) have demonstrated remarkable capabilities in complex
reasoning and decision-making tasks [6, 12, 11]. By integrating search algorithms and divide-and-
conquer strategies, LLMs can perform long-term planning and strategy optimization in gaming. For
example, recent work by Schultz and Adamek [12] highlighted LLMs’ abilities to master complex
game rules and strategies. Furthermore, LLMs’ reasoning capabilities enable them to incorporate
Theory of Mind (ToM) in single-step decision-making, further enhancing strategy formulation and
execution in imperfect-information environments. These advances lay a solid foundation for applying
LLMs to bridge and similar games.

In summary, while substantial research has been conducted in imperfect-information games, especially
in bridge, many challenges remain unresolved. This paper aims to address these limitations by
introducing LLMs and integrating advanced algorithms such as Mirror Descent [1], DeepNash [10],
and R-NaD [9] to enhance Al performance and collaboration in bridge.

3 Methods

This section provides a detailed introduction to our proposed approach, including environment setup,
multi-agent system architecture, reward design, and training and fine-tuning strategies.

3.1 Environment and Baseline

To train a bridge agent in an imperfect information game environment, we employed the JAX-based
PGX bridge bidding environment. PGX offers an efficient and scalable platform for bridge simulation,
supporting complex bidding and playing processes, and has been validated in numerous experiments.
Additionally, as a baseline, we selected the DouZero method, which has demonstrated excellent
performance in multi-agent collaborative tasks, providing a robust benchmark for our research.
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3.2 Multi-Agent System Architecture

We modeled the bridge game as a 3-vs-3 game model, where each side consists of three agents: a
bidding system generator, a player strategy 1, and a player strategy 2. This architecture not only
simulates team collaboration in actual matches but also allows for independent strategy optimization
across different modules.(See Fig.2)

Specifically, the system includes the following key modules:

» Bidding System Generator: Responsible for generating bidding strategies that conform
to the CCBA natural bidding system. Through learning and optimization, it can generate
reasonable bidding suggestions based on the current hand and historical bidding information.

* Player Strategy 1 and Strategy 2: Each is responsible for decision-making during the
playing phase, optimizing card-playing strategies in different hand situations through deep
reinforcement learning.

This modular design enables each agent to focus on its specific tasks while achieving overall strategy
optimization through collaboration.

3.3 Reward Design

To ensure system convergence and strategy stability, we adopted a reward transformation method
inspired by DeepNash. Specifically, we transformed the original reward as follows:

=74 & Rash )

where r is the original reward provided by the environment, « is the weight coefficient, and Ryagsh,
meaning Nash reward, adjusts and optimizes the agent’s strategy based on Nash equilibrium theory.
This reward transformation method guides the agents to gradually approach Nash equilibrium during
multi-agent collaboration, thereby enhancing the robustness and effectiveness of the overall strategy.

3.4 Training and Fine-Tuning

The training process of the entire system includes two stages: pre-training and fine-tuning. In the pre-
training stage, we first use the DouZero method to train the basic strategy, equipping the agents with
fundamental bidding and playing capabilities. Subsequently, in the fine-tuning stage, we refine and
optimize each module using simulated game data from the PGX environment for specific multi-agent
collaborative tasks.

The fine-tuning process includes:

* Fine-tuning the Bidding System Generator: Through extensive bidding simulations,
we optimize the generator to more accurately reflect bidding strategies and information
transmission mechanisms in actual matches.

* Fine-tuning Player Strategies: Using deep reinforcement learning algorithms, we optimize
the card-playing strategies for Strategy 1 and Strategy 2 to adapt to different hands and
opponent strategies.

* Optimizing Multi-Agent Collaboration: Through joint training and strategy sharing, we
enhance the collaboration among agents, ensuring consistency and effectiveness in the
overall strategy.

Additionally, we employ a distributed training architecture to accelerate the model training process
and continuously monitor and evaluate the performance of each module and the system as a whole.

In summary, our method aims to improve Al performance and collaboration in imperfect information
games like bridge by constructing a modular multi-agent system combined with advanced reward
design and training strategies.

3.5 Continual Pretraining

Pretraining Data Processing and Construction To build an AI model capable of effectively
executing bridge strategy tasks, we combined multiple data sources during the pre-training stage,
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including bridge books, reasoning datasets, and code datasets. Bridge book data was segmented and
input into the model as strings, preserving the complete semantics and context of bridge strategies.
Reasoning and code datasets were also input as strings to ensure consistent format processing with
bridge data.

During data cleaning, we applied strict quality filtering to each data source:

* Bridge Books: Chapters were segmented, with each section treated as an independent data
unit, and redundant annotations and noise data were removed.

» Reasoning Datasets: Duplicate and redundant data were eliminated, focusing on retaining
high-quality content related to logical reasoning.

* Code Datasets: Invalid code segments and comments were filtered out, retaining core parts
related to algorithms and logic.

In the multi-data source construction process, we mixed bridge and reasoning datasets in a 7:3 ratio
and designed alternating and focused training workflows to enhance the model’s adaptability to bridge
tasks.

Model Selection and Initialization Initial experiments selected multiple base models, and their
performance on bridge strategy-related tasks was evaluated using a 70-question assessment question-
naire. The results showed that the Gemma-2-9b model performed best, so we chose it as the base
model for pre-training.

During model initialization, we conducted preliminary pre-training based on Gemma-2-9b and
designed additional specialized tokens (e.g., "PASS", "1&", "1, "10", "1M4") to expand the model’s
vocabulary, enhancing its understanding of bridge semantics.

Continual Pretraining In pre-training, we adopted the Continual Pretraining method to pro-
gressively improve the model’s bridge strategy and reasoning capabilities. The training process was
divided into the following stages:

* Mixed Training Phase: Using a 7:3 ratio of bridge and reasoning datasets, we trained for 7
epochs to initially enhance the model’s multi-task adaptability.

* Separate Training Phase: Based on mixed training, we trained for 4 epochs using only the
bridge dataset to further optimize the model’s specialization in bridge strategy tasks.

To validate the impact of different data ratios and training methods, we experimented with various
training configurations. We found that a reasonable training workflow significantly improved the
model’s performance on bridge tasks, particularly in response-type tasks, where the accuracy reached
60%.

Training Configuration and Optimization Our training architecture was based on the DeepSpeed
framework, employing the following key optimization strategies:

* Distributed Training: We used multi-GPU parallel training with DeepSpeed’s ZeRO Stage-
3 optimization to reduce memory usage and support efficient training of large models.

* Gradient Accumulation and Mixed Precision: Gradient accumulation and mixed precision
training (bfloat16 and tf32) were used to improve training efficiency and reduce resource
consumption.

* Dynamic Data Loading and Alternating Training: Dynamic data loading strategies and
alternating training methods were employed to mix bridge and reasoning data.

Additionally, we designed a learning rate scheduler based on cosine decay, combined with a linear
warm-up step, to optimize the model’s convergence speed and performance.

Evaluation and Saving During training, we regularly evaluated the model’s performance using a
35-question assessment questionnaire to test its performance on bridge strategy tasks. We also saved
model checkpoints at regular intervals to ensure quick recovery in case of training interruptions. The
final pre-trained model was saved in a reproducible format for subsequent fine-tuning and application.

In summary, our experiments validated the effectiveness of the continual pre-training method and
proposed a pre-training strategy suitable for bridge Al, laying the foundation for the fine-tuning stage.
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4 Experiments

4.1 Pretraining

During the pre-training stage, we designed a series of experiments to evaluate the model’s performance
on bridge strategy tasks. The experiments primarily focused on the model’s multi-task adaptability,
single-task specialization, and the impact of different data combinations and training workflows on
the final results.

4.1.1 Experimental Setup

Evaluation Tasks We constructed a 35-question assessment questionnaire covering major scenarios
in bridge strategy tasks, such as response, rebid, counting points, and opening bid, to comprehensively
evaluate the model’s performance across different tasks.

Experimental Configuration The experiments were implemented using the DeepSpeed framework
with the following parameter settings:

* Initial Model: Gemma-2-9b, with expanded tokens specific to the bridge domain.

* Learning Rate: 2 x 1075, using a cosine decay scheduler.

* Batch Size: 4 per device, with a gradient accumulation step of 8.

* Training Phases: Mixed training for 7 epochs, followed by 4 epochs of specialized training
on the bridge dataset.

* Mixed Precision: bfloat16 and tf32 training modes.

Model Name Overcall (4) Opening Bid (9) Artificial Bid (5) Preemptive Bid (2) Rebid (4) HCP (5) Response (6)
bridge_15ep 0.2500 0.2222 0.0000 0.0000 0.7500 0.0000 0.5000
bridge_magpie-7:3-4ep 0.1250 0.1667 0.0000 0.2500 0.3750 0.1000 0.0000
bridge_magpie-7:3-6ep+4_ep_bridge 0.5000 0.2222 0.4000 0.0000 0.5000 0.0000 0.6666

Table 1: Accuracy rates of pretrained models on various bridge tasks. The models were pretrained on a mixture
of bridge knowledge and reasoning datasets, and evaluated on different bridge-related tasks. The numbers in
parentheses indicate the number of questions for each task type.

Model Name Overcall (4) Opening Bid (9) Artificial Bid (5) Preemptive Bid (2) Rebid (4) HCP (5) Response (6)
qwen-2.5-32b-10:2:3:4-Tep 0.3750 0.3333 0.2000 0.2500 0.2500 0.1000 0.2500
gemma-2-9b-10:3:2:2-7ep 0.2500 0.3333 0.0000 0.0000 0.2500 0.0000 0.6667
gemma-2-9b-10:2:3:4-40ep-2048t 0.2500 0.3333 0.2000 0.0000 0.7500 0.2000 0.5000

Table 2: Accuracy rates of pretrained models with different base architectures on various bridge tasks. Model
names follow the format of bridge-code ratio and magpie-Q&A ratio in inference. The pretrained models are
evaluated on bridge-related tasks, with numbers in parentheses indicating the number of questions per task type.

4.1.2 Experimental Results

Mixed Training Performance After 7 epochs of mixed training with a 7:3 ratio of bridge and
reasoning datasets, the model achieved a 60% accuracy rate on response-type tasks, demonstrating
strong multi-task adaptability. However, performance on counting points and preemptive bid tasks
was relatively poor, indicating that these tasks may require more specialized training data.

Separate Training Performance After 4 epochs of specialized training on the bridge dataset, the
model’s accuracy improved on rebid and opening bid tasks, but performance on response-type tasks
slightly declined. This suggests that the separate training phase enhanced the model’s specialization
in specific domains but may have negatively impacted some multi-task capabilities.

Impact of Data Combinations When code data and additional reasoning datasets were included
in mixed training, the model’s performance on rebid and opening bid tasks further improved, but
accuracy on response and artificial bid tasks declined. This indicates that the diversity of data sources
affects different tasks differently, and optimizing data ratios is key to improving model performance.

Task Type Analysis Overall, response tasks consistently achieved the highest accuracy, while
counting points and preemptive bid tasks performed poorly. Analysis suggests that this may be related
to data distribution and the linguistic patterns of the tasks. Future work could design more refined
data and training strategies for these weak areas.
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4.1.3 Summary of Results

The experiments demonstrated that continual pre-training significantly enhances the model’s bridge
strategy capabilities. Appropriate data ratios and training workflows are crucial for performance
improvement, and the separate training phase plays an important role in specializing the model for
specific tasks. Ultimately, our method achieved a 50% overall accuracy rate on the 35-question test,
laying the groundwork for further development of bridge Al.

Model Correct Accuracy Acceptable Accuracy Correct IDs Acceptable IDs
llama-3.2-3B 0.0857 0.1429 [13, 22, 33] [13,22, 23,27, 33]
llama-3-8b 0.0857 0.1429 [8, 20, 31] [2, 8, 20, 26, 31]
mistral-7b-v0.3 0.0857 0.2286 [2, 18, 31] [1,2, 14, 16, 18, 23, 26, 29]
gemma-2-9b 0.1714 0.2000 [3,5,21, 22,29, 32] [3, 5,21, 22, 26, 29, 30]

Table 3: Evaluation results of models with background prompts. The table shows the correct and acceptable
accuracy rates, along with the corresponding question IDs for correct and acceptable answers.

Model Avg Correct Acc  Avg Acceptable Acc
bridge_15epoch_4batchsize 0.2571 0.3143
pretrain-bridge_magpie-7:3-4epoch_4batchsize 0.1286 0.2286
bridge_magpie-7:3-6epoch_4bsize+4_epoch_bridge 0.3000 0.4571

Table 4: Comparison of model accuracy metrics. The table presents average correct and acceptable accuracy
rates.

Model Top 2 Correct Acc  Top 2 Acceptable Acc
bridge_15epoch_4batchsize [0.2571] [0.3143]
pretrain-bridge_magpie-7:3-4epoch_4batchsize [0.1429, 0.1143] [0.2286, 0.2286]
bridge_magpie-7:3-6epoch_4bsize+4_epoch_bridge [0.3429, 0.2571] [0.4571, 0.4571]

Table 5: Comparison of model accuracy metrics. The table presents top 2 accuracy metrics.

5 Conclusion

In this paper, we propose a novel approach to enhancing multi-agent collaboration in the game of
bridge through a combination of modular reinforcement learning (MARL) and large language models
(LLMs). Our key contributions are as follows:

* A modular system architecture for bridge, where distinct components handle the bidding
and playing phases separately, enabling independent optimization while maintaining overall
strategy coherence.

* A two-stage training pipeline, which first equips agents with foundational skills through pre-
training and then fine-tunes these skills to improve multi-agent collaboration and adaptability.

* The introduction of a reward transformation mechanism based on game-theoretic principles,
specifically inspired by Nash equilibrium, to stabilize learning and improve collaborative
strategies.

* Comprehensive experimental validation showing that our approach achieves strong zero-
shot collaboration performance, adapts well to out-of-distribution agents, and outperforms
existing self-play methods in a variety of competitive scenarios.

The results demonstrate that the combination of MARL with LLMs can significantly enhance the
performance of Al agents in imperfect-information games like bridge. Our framework not only
delivers strong collaboration and adaptability but also provides a scalable solution that holds promise
for broader applications in strategic decision-making tasks.

Future Work While this work establishes a strong foundation, several exciting directions for future
research emerge:

* Generalization to Other Games: Extending the modular approach and reward transfor-
mation mechanisms to other imperfect-information games, such as whist, spades, or even
poker, to evaluate the generalizability of our model.
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* Human-AI Collaboration: Exploring techniques to improve human-Al collaboration,
focusing on interpretability, user experience, and strategies to align Al decision-making with
human intuition.

* Adaptive Learning: Investigating online learning and continual adaptation to further en-
hance the agents’ ability to respond to dynamic environments, such as evolving strategies in
competitive tournaments.

* Scalability and Efficiency: Scaling the framework to handle larger datasets and more
complex team structures, as well as optimizing the training process to reduce computational
cost while maintaining high performance.

* Ethical Considerations: Addressing the ethical challenges in competitive Al environments,
ensuring that Al behavior aligns with fair play principles and promoting transparency in
multi-agent systems.

By pursuing these avenues, future work can refine our approach, making it more robust, adaptable,
and applicable to a wider range of real-world strategic decision-making problems.

6 Appendix

The oral presentation of this paper is available on the following website:
https://disk.pku.edu.cn/link/ AA139B8B0C654546699CAAC5SB002E0268F.
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